9 research outputs found

    A Factor-Adjusted Multiple Testing Procedure with Application to Mutual Fund Selection

    Full text link
    In this article, we propose a factor-adjusted multiple testing (FAT) procedure based on factor-adjusted p-values in a linear factor model involving some observable and unobservable factors, for the purpose of selecting skilled funds in empirical finance. The factor-adjusted p-values were obtained after extracting the latent common factors by the principal component method. Under some mild conditions, the false discovery proportion can be consistently estimated even if the idiosyncratic errors are allowed to be weakly correlated across units. Furthermore, by appropriately setting a sequence of threshold values approaching zero, the proposed FAT procedure enjoys model selection consistency. Extensive simulation studies and a real data analysis for selecting skilled funds in the U.S. financial market are presented to illustrate the practical utility of the proposed method. Supplementary materials for this article are available online

    Robust Multiple Testing under High-dimensional Dynamic Factor Model

    Full text link
    Large-scale multiple testing under static factor models is commonly used to select skilled funds in financial market. However, static factor models are arguably too stringent as it ignores the serial correlation, which severely distorts error rate control in large-scale inference. In this manuscript, we propose a new multiple testing procedure under dynamic factor models that is robust against both heavy-tailed distributions and the serial dependence. The idea is to integrate a new sample-splitting strategy based on chronological order and a two-pass Fama-Macbeth regression to form a series of statistics with marginal symmetry properties and then to utilize the symmetry properties to obtain a data-driven threshold. We show that our procedure is able to control the false discovery rate (FDR) asymptotically under high-dimensional dynamic factor models. As a byproduct that is of independent interest, we establish a new exponential-type deviation inequality for the sum of random variables on a variety of functionals of linear and non-linear processes. Numerical results including a case study on hedge fund selection demonstrate the advantage of the proposed method over several state-of-the-art methods.Comment: 29 pages, 4 table

    Estimation of false discovery proportion in multiple testing: From normal to chi-squared test statistics

    No full text

    Single-index modulated multiple testing

    No full text
    corecore